Программирование микроконтроллеров для чайников stm32. Начинаем изучать Cortex-M на примере STM32. Управление тактированием периферийных блоков

Вводная статья курса уроков по программированию микроконтроллеров STM32.

Этой статьей начинаю цикл уроков, посвященных программированию микроконтроллеров STM32.

Тема очень интересная, по популярности может превзойти ”Уроки Ардуино”. В принципе, это в какой-то степени продолжение или расширение ” ”. По крайней мере, я собираюсь постоянно ссылаться на статьи из этой рубрики, проводить аналогию между ними и уроками STM32.

Я не призываю бросать программировать на Ардуино и переходить только на STM32. Но есть задачи, которые на Ардуино выполнить невозможно или намного сложнее. Да и разве плохо уметь создавать системы, устройства на обоих типах микроконтроллеров.

Язык программирования в принципе один и тот же. Тем более одинаковы аппаратные компоненты, подключаемые к контроллеру: кнопки, светодиоды, дисплеи, модули проводных и беспроводных технологий связи и т.п.

Много информации уже есть на сайте. Например, зачем мне заново рассказывать про технологию клиент-сервер, если в рубрике ”Уроки Ардуино” есть статья об этом.

Контроллеры STM32 значительно превосходят по техническим характеристикам платы Ардуино на 8 разрядных микроконтроллерах ATmega328, ATmega2560 и т.п. У них более высокая производительность, больше объем памяти, периферийные устройства разнообразнее по функциям, номенклатуре, количеству. STM32 позволяют реализовывать значительно более сложные задачи, чем платы Ардуино.

Несмотря на вышесказанное я считаю, что программировать STM32 не сложнее, чем Ардуино. По крайней мере, я собираюсь так преподнести материал. Хотя объем информации будет больше.

Уроки рассчитаны как на опытных программистов, изучающих STM32, так и на людей, делающих первые шаги в программировании. Т.е. я собираюсь приводить строгую информацию и сопровождать ее подробными пояснениями. Для второй категории читателей я буду давать ссылки на аналогичные темы в ”Уроках Ардуино”. Не хочется одно и то же ”разжевывать” несколько раз.

Буду преподносить оптимальный с моей точки зрения подход к программированию STM32. Кто-то может с ним не согласиться.

Итак. Я ставлю цель:

  • научить вас практическому программированию микроконтроллеров STM32;
  • расширить ваши знания в области программирования на языке C++, конечно у кого их не хватает;
  • представить строгую техническую информацию о контроллерах STM32 на русском языке;
  • какая-то часть уроков будет посвящена аппаратной части, подключаемой к микроконтроллеру.

Общие сведения о микроконтроллерах семейства STM32.

Возможности контроллеров STM32 потрясают! По крайней мере, меня.

Плата с микроконтроллером STM32F103C8T6 по стоимости сопоставима с ценой плат Ардуино на базе ATmega328 и значительно дешевле плат типа Arduino Mega2560.

По она стоит всего 175 руб.

Но по техническим характеристикам! Что стоит только сравнение разрядности обрабатываемых данных. 32 против 8!

У меня ощущение, что я сравниваю Ардуино не с маленькой дешевой платой, а с дорогим монстрообразным 32 разрядным контроллером. Судите сами.

Параметры STM32F103C8T6 Arduino Nano
Разрядность 32 бит 8 бит
Частота 72 мГц 16 мГц
Объем FLASH 64 кБайт 32 кБайт
Объем ОЗУ 20 кБайт 2 кБайт
Число выводов 37 22
Аппаратное умножение и деление Есть, 32 разряда Только умножение, 8 разрядов
АЦП 2 АЦП, 12 разрядов, 10 входов, 1 мкс время преобразования 10 разрядов, 8 входов, 100 мкс время преобразования
Контроллеры прямого доступа к памяти 7 каналов нет
Таймеры 7 3
UART 3 (выше скорость, больше режимов) 1
I2C 2 1
SPI 2 1
USB 1 нет
CAN 1 нет
Часы реального времени есть нет
Модуль аппаратного расчета CRC кода есть нет

К этому можно бесконечно добавлять с приставкой ”гораздо более мощные, совершенные, функциональные”: система прерываний, порты ввода-вывода, коммуникационные интерфейсы и т.п.

И это еще далеко не самый мощный вариант STM32. У меня есть плата STM32F407VET6 с частотой 210 мГц и АЦП со скоростью преобразования до 7,2 миллионов выборок в секунду. Собираюсь на ней сделать динамическую подсветку телевизора, т.е. обрабатывать видеосигнал.

Техническая документация.

Однажды, заехав в очередную съемную квартиру, я столкнулся с определенным неудобством, которое достаточно сильно напрягало: выключатель света в основной комнате оказался за шкафом-стенкой, который был прикручен к стене, и его перестановка была невозможна т.к. на это требовалось значительно много времени и сил. Решить данную проблему хотелось очень сильно и в голову пришла одна мысль: сделать дистанционный пульт для управления освещением!

Именно с идеи создания собственного пультика для управления светом в комнате и началось моё увлечение электроникой, микроконтроллерами и различными радиоустройствами.

После этого я начал изучать данную тему, знакомиться с основами электроники, примерами устройств, узнавать, как люди реализуют подобного рода устройства. Поискав информацию на тему того, с чего можно было бы начать изучение микроконтроллеров я узнал о том, что такое Arduino, с чем их едят, о том, как с ними работать. Легкое решение выглядело весьма привлекательно, ведь насколько я понял на тот момент, код собирается на раз-два. Но сделав вывод, что я не узнаю, что творится внутри микроконтроллера за рамками Arduino-скетчей я решил поискать более интересный вариант, который подразумевал глубокое изучение и погружение в дебри микроконтроллерной техники.

В компании, в которой я работаю, имеется отдел разработки, и я решил обратиться к инженерам чтобы они направили меня на путь истинный и показали с чего можно было бы начать решение своей задачи. Меня решительно отговорили от изучения Arduino и у меня в руках оказалась неведомая и непонятная зеленая платка на которой виднелись надписи, буковки, разные электронные компоненты.

Всё это для меня на тот момент показалось непостижимо сложным, и я даже пришел в некоторое смятение, но от реализации поставленной задачи отказываться не собирался. Так я познакомился с семейством микроконтроллеров STM32 и платой STM32F0-Discovery, после изучения которых мне хотелось бы сваять свой девайс под нужные мне цели.

К моему большому удивлению, такого большого комьюнити, статей, примеров, различных материалов по STM не было в таком же изобилии как для Arduino. Конечно, если поискать найдется множество статей «для начинающих» где описано, как и с чего начать. Но на тот момент мне показалось, что все это очень сложно, не рассказывались многие детали, интересные для пытливого ума новичка, вещи. Многие статьи хоть и характеризовались как «обучение для самых маленьких», но не всегда с их помощью получалось достичь требуемого результата, даже с готовыми примерами кода. Именно поэтому я решил написать небольшой цикл статей по программированию на STM32 в свете реализации конкретной задумки: пульт управления освещением в комнате.

Почему не AVR/Arduino?

Предвосхищая высказывания о том, что неопытному новичку бросаться сразу же в изучение такого сложного МК как STM32 было бы рановато - я расскажу, почему я решил пойти именно этим путём, не вникая и не знакомясь с семейством процессоров от Atmel и даже не рассматривая Arduino как вариант.

Во-первых, решающую роль сыграло отношение цена-функционал, разницу видно даже между одним из самых дешевых и простых МК от ST и достаточно «жирной» ATMega:


После того, что я увидел значительные различия между ценой и возможностями AVR и STM32 – мною было принято решение, что AVR использовать в своей разработке я не буду =)

Во-вторых, я предварительно для себя старался определить набор умений и навыков, которые бы я получил к моменту, когда я достигну требуемого результата. В случае если бы я решил использовать Arduino – мне было бы достаточно скопировать готовые библиотеки, накидать скетч и вуаля. Но понимание того, как работают цифровые шины, как работает радиопередатчик, как это всё конфигурируется и используется – при таком раскладе мне бы не пришло бы никогда. Для себя я выбрал самый сложный и тернистый путь, чтобы на пути достижения результата – я бы получил максимум опыта и знаний.

В-третьих, любой STM32 можно заменить другим STM32, но с лучшими характеристиками. Причем без изменения схемы включения.

В-четвертых, люди, занимающиеся профессиональной разработкой больше склонны к использованию 32-разрядных МК, и чаще всего это модели от NXP, Texas Instruments и ST Microelectronics. Да и мне можно было в любой момент подойти к своим инженерам из отдела разработки и разузнать о том, как решить ту или иную задачу и получить консультацию по интересующим меня вопросам.

Почему стоит начинать изучение микроконтроллеров STM32 с использования платы Discovery?

Как вы уже поняли, знакомство и изучение микроконтроллера STM32 мы начнем с Вами, уважаемые читатели, с использования платы Discovery. Почему именно Discovery, а не своя плата?

Что нам понадобится для разработки помимо платы Discovery?

В своей работе с платой Discovery нам понадобится еще ряд незаменимых вещей, без которых мы не сможем обойтись:

Приступим к первоначальной настройке и подготовке IDE к работе!

После того, как скачается установочный файл нашей IDE можно приступать к установке. Следуя указаниям инсталлятора проведите процесс установки. После того, как скопируются все файлы, необходимые для работы появится окно установщика софтовых пакетов для разработки Pack Installer . В данном установщике содержатся низкоуровневые библиотеки, Middleware, примеры программ, которые регулярно пополняются и обновляются.


Для начала работы с нашей платой нам необходимо установить ряд пакетов необходимых для работы и необходимо найти микроконтроллер, с которым мы будем работать. Так же можно воспользоваться поиском вверху окна. После того, как мы нашли наш МК кликаем на него и во второй половине окна и нам необходимо установить следующий перечень библиотек:
  1. Keil::STM32F0xx_DFP – полноценный пакет программного обеспечения для конкретного семейства микроконтроллеров, включающий в себя мануалы, даташиты, SVD-файлы, библиотеки от производителя.
  2. ARM::CMSIS – пакет Cortex Microcontroller Software Interface Standard, включающий в себя полный набор библиотек от ARM для поддержки ядра Cortex.
  3. Keil::ARM_Compiler – последняя версия компилятора для ARM.
После установки требуемых паков можно перейти к настройке IDE и нашего отладчика/программатора. Для этого нам необходимо открыть главное окно Keil и создать новый проект.


Для этого необходимо перейти в меню Project -> New uVision Project и выбрать папку, в которую сохраним наш проект.

После Keil спросит нас какой МК будет использоваться в проекте. Выбираем нужный нам МК и нажимаем ОК .


И вновь появится, уже знакомое нам, окно в котором мы можем подключить интересующие нас модули к проекту. Для нашего проекта понадобится два модуля:
  1. Ядро библиотеки CMSIS , в котором объявлены настройки, адреса регистров и многое другое из того что необходимо для работы нашего МК.
  2. Startup-файл , который отвечает за первоначальную инициализацию МК при старте, объявление векторов и обработчиков прерываний и многое другое.
Если все зависимости у подключаемых удовлетворены – менеджер будет нам сигнализировать об этом зеленым цветом:


После того как мы нажмем клавишу ОК мы можем приступать к созданию нашего проекта.

Для того, чтобы сконфигурировать параметры проекта и настроить наш программатор нужно правым кликом по Target 1 открыть соответствующее меню.


В главном меню проекта настраиваем параметр Xtal в значение 8.0 MHz . Данный параметр отвечает за частоту работы кварцевого осциллятора нашего МК:


Далее переходим к настройке нашего программатора/дебагер. Кликаем в этом же окне на вкладку Debug и выбираем в поле Use параметр ST-Link Debugger и переходим в настройки:


В настройках мы должны увидеть модель нашего ST-Link установленного на плате, его серийный номер, версию HW и IDCODE МК который будем прошивать:

Для удобства можно настроить параметр, отвечающий за то, чтобы МК сбрасывался автоматически после перепрошивки. Для этого нужно поставить галочку в поле Reset and Run .


После этого нужно настроить еще одну опцию, которая позволит нам писать русскоязычные комментарии к коду наших проектов. Нажимаем кнопку Configuration и в открывшемся меню в поле Encoding выбираем Russian Windows-1251 .


Всё. Наша IDE и программатор готовы к работе!

В Keil имеется удобный навигатор по проекту, в котором мы можем видеть структуру проекта, необходимые для работы справочные материалы, в т. ч. те, которые мы уже скачали к себе на компьютер до этого (схема Discovery, datasheet, reference manual), список функций, использованных в проекте и шаблоны для быстрой вставки разных языковых конструкций языка программирования.


Переименуем папку в структуре проекта с Source Group 1 на App/User , таким образом обозначив то, что в данной папке у нас будут располагаться файлы пользовательской программы:


Добавим основной файл программы через навигатор проекта, выполнив команду Add New Item To Group “App/User” .


Необходимо выбрать из предложенного списка C File (.c) и назначить ему имя main.c :


Созданный файл автоматически добавится в структуру проекта и откроется в главном окне программы.

Что ж, теперь мы можем приступить к созданию нашей программы.

Первым делом, необходимо подключить к нашему исполняемому файлу заголовочный документ нашего семейства микроконтроллеров. Добавим в файл main.c строки следующего содержания, данная программа заставить попеременно моргать наши светодиоды:

/* Заголовочный файл для нашего семейства микроконтроллеров*/ #include "stm32f0xx.h" /* Тело основной программы */ int main(void) { /* Включаем тактирование на порту GPIO */ RCC->AHBENR |= RCC_AHBENR_GPIOCEN; /* Настраиваем режим работы портов PC8 и PC9 в Output*/ GPIOC ->MODER = 0x50000; /* Настраиваем Output type в режим Push-Pull */ GPIOC->OTYPER = 0; /* Настраиваем скорость работы порта в Low */ GPIOC->OSPEEDR = 0; while(1) { /* Зажигаем светодиод PC8, гасим PC9 */ GPIOC->ODR = 0x100; for (int i=0; i<500000; i++){} // Искусственная задержка /* Зажигаем светодиод PC9, гасим PC8 */ GPIOC->ODR = 0x200; for (int i=0; i<500000; i++){} // Искусственная задержка } }
После того, как мы написали нашу программу, настала пора скомпилировать код и загрузить прошивку в наш МК. Чтобы скомпилировать код и загрузить можно воспользоваться данным меню:


Команда Build (или горячая клавиша F7) скомпилирует код, и если не было никаких ошибок программе выведет в логе компиляции следующее сообщение о том, что ошибок и предупреждений нет:


Команда Load (или горячая клавиша F8) загрузит компилированный код в наш МК и автоматически отправит его на исполнение:


После загрузки кода мы увидим, как светодиоды начали мигать с равными временными промежутками.


Ура! Первый шаг в освоении микроконтроллеров STM32 мы сделали! В мы разберем что такое битовые и логические операции, как ими пользоваться и узнаем об одной очень полезной утилитке для работы с МК, ну а пока можем наслаждаться тем, как весело перемигиваются светодиоды на нашей плате Discovery.)

Система тактирования STM32.

Сегодня речь пойдет о системе тактирования микроконтроллеров STM 32. Если вы ещё не знаете что такое такт, частота и вообще не затрагивали до этого системы тактирования, . Хоть по данной ссылке и рассматривается система тактирования микроконтроллера AVR , понятия определенные в уроке по ссылке, применимы и к системе тактирования микроконтроллеров STM 32.

Итак, приступим!

Рассматривать систему тактирования будем на примере микроконтроллера STM 32F 303VCT 6, который установлен в отладочной плате STM 32 F 3 DISCOVERY .

Взглянем на общую структуру системы тактирования:

Как мы видим, система тактирования STM 32, на порядок сложнее системы тактирования микроконтроллеров AVR, не смотря на то, что на рисунке отражена лишь основная её часть.

Давайте разбираться!

Рассматривать схему следует слева направо. Во-первых, мы должны выбрать основной источник тактирования контроллера. Выбирать будем между HSI и HSE.

HSE -Внешний высокочастотный генератор. Источником тактирования для него служит внешний тактовый сигнал (Input frequency ), который как мы видим по схеме, может быть от 4 до 32 МГц. Это может быть кварцевый резонатор, тактовый генератор и так далее.

HSI - Внутренний высокочастотный генератор. В микроконтроллерах STM 32 F 3 является RC цепочкой с частотой 8МГц. Точность значительно ниже внешнего генератора HSE.

Каждый из данных источников тактирования может быть соединен с PLL . Однако перед подачей на PLL сигнал с HSI будет уменьшен в 2 раза. Сигнал HSE в свою очередь, может подаваться на PLL без изменений, либо быть уменьшен в определенное количество раз, по желанию пользователя.

PLL Clock - Система Фазовой Автоподстройки Частоты (ФАПЧ). Позволяет умножить входной сигнал HSI или HSE в необходимое количество раз.

С PLL сигнал может быть подан на системную шину, максимальная частота которой 72МГц. Либо, на системную шину может быть подан сигнал HSE или HSI напрямую, то есть без преобразования PLL .

Системная тактовая частота SYSCLK , тактирует все основные шины микроконтроллера, через соответствующие делители, как мы видим на схеме выше. Следует учитывать, что максимальная тактовая частота некоторых шин ниже SYSCLK . Поэтому, перед подачей тактового сигнала SYSCLK на шину, следует поделить его соответствующим делителем. Если этого не сделать, микроконтроллер зависнет.

Для настройки тактирования можно прибегнуть к ручной правке регистров, либо воспользоваться библиотечными функциями. Мы воспользуемся библиотекой.

Настроим нашу отладочную плату STM 32 F 3 DISCOVERY на работу с тактовой частотой 72 МГц.

Создадим и настроим проект в Keil uVision . .

Добавим следующий код:

#include "stm32f30x_gpio.h" #include "stm32f30x_rcc.h" void InitRCC() { RCC_HSEConfig(RCC_HSE_ON); //Enable HSE while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) ; //Waiting for HSE //Set Flash latency FLASH->ACR |= FLASH_ACR_PRFTBE; FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY); FLASH->ACR |= (uint32_t)((uint8_t)0x02); RCC_PREDIV1Config(RCC_PREDIV1_Div1);//PREDIV 1 Divider = 1 RCC_PLLConfig(RCC_PLLSource_PREDIV1,RCC_PLLMul_9);//Set PREDIV1 as source for PLL,And set PLLMUL=9 RCC_PLLCmd(ENABLE);//Enable PLL while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;//Waiting for PLL RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//Set PLL as SYSCLK Soucre RCC_HSICmd(DISABLE);//Disable HSI } int main(void) { RCC_ClocksTypeDef RCC_Clocks; InitRCC(); RCC_GetClocksFreq (&RCC_Clocks); __NOP (); while (1) { } }

#include "stm32f30x_gpio.h"

#include "stm32f30x_rcc.h"

void InitRCC ()

RCC_HSEConfig (RCC_HSE_ON ) ; //Enable HSE

while (RCC_GetFlagStatus (RCC_FLAG_HSERDY ) == RESET ) ; //Waiting for HSE

//Set Flash latency

FLASH -> ACR |= FLASH_ACR_PRFTBE ;

FLASH -> ACR &= (uint32_t ) ((uint32_t ) ~ FLASH_ACR_LATENCY ) ;

FLASH -> ACR |= (uint32_t ) ((uint8_t ) 0x02 ) ;

RCC_PREDIV1Config (RCC_PREDIV1_Div1 ) ; //PREDIV 1 Divider = 1

RCC_PLLConfig (RCC_PLLSource_PREDIV1 , RCC_PLLMul_9 ) ; //Set PREDIV1 as source for PLL,And set PLLMUL=9

RCC_PLLCmd (ENABLE ) ; //Enable PLL

while (RCC_GetFlagStatus (RCC_FLAG_PLLRDY ) == RESET ) ; //Waiting for PLL

RCC_SYSCLKConfig (RCC_SYSCLKSource_PLLCLK ) ; //Set PLL as SYSCLK Soucre

RCC_HSICmd (DISABLE ) ; //Disable HSI

int main (void )

RCC_ClocksTypeDef RCC_Clocks ;

InitRCC () ;

RCC_GetClocksFreq (& RCC_Clocks ) ;

NOP () ;

while (1 )

В основной функции main , объявлена структура RCC _ ClocksTypeDef . Данная структура содержит в себе поля, отражающие текущую тактовую частоту определенных частей контроллера.

Затем в основной функции вызывается функция InitRCC ,которая настраивает тактирование контроллера. Рассмотрим её подробнее.

Командой RCC _ HSEConfig (RCC _ HSE _ ON ), мы включаем HSE .На его включение необходимо время, поэтому необходимо подождать пока не будет установлен флаг RCC _ FLAG _ HSERDY . Делаем мы это в цикле while (RCC _ GetFlagStatus (RCC _ FLAG _ HSERDY ) == RESET ) .

Затем мы производим настройку задержки флеш памяти. Это необходимо делать при работе системной шины на частотах свыше 36 МГц!

После настройки задержки выбираем предделитель PLL . Командой RCC _ PREDIV 1 Config (RCC _ PREDIV 1_ Div 1) мы устанавливаем предделитель на 1. Командой RCC _ PLLConfig (RCC _ PLLSource _ PREDIV 1, RCC _ PLLMul _9 ) выбирам HSE как источник частоты для PLL и выбираем умножение в 9 раз. Остается только влючить PLL командой RCC _ PLLCmd (ENABLE ), и ожидать установки флага RCC _ FLAG _ PLLRDY ,в цикле while . Тем самым мы обеспечиваем необходимую временную задержку для включения PLL . После этого выбираем PLL как источник системной частоты SYSCLK командой RCC _ SYSCLKConfig (RCC _ SYSCLKSource _ PLLCLK ). Предделители шин трогать не будем, поэтому шины AHB ,APB 1,APB 2 будут работать на частотах 72,36 и 72 МГц соответственно.

Остается лишь выключить внутреннюю RC цепочку командой RCC _ HSICmd (DISABLE ).

После выполнения функции InitRCC , в основном цикле прошивки заполним структуру RCC _ ClocksTypeDef , что позволит нам узнать, правильно ли мы настроили систему тактирования. Делаем мы это командой RCC_GetClocksFreq (&RCC_Clocks).

Посмотреть значения тактовых частот контроллера можно в режиме отладки, установив точку останова на команде __ NOP () что означает, пустую команду. Данную команду часто добавляют для удобства отладки.

Подключаем отладочную плату STM32 F3 DISCOVERY , собираем прошивку, прошиваем плату и наконец, заходим в режим отладки, нажав кнопку Start /Stop debug session (Ctrl +F 5). Установив точку останова на функции __ NOP ,и добавив структуру RCC _Clocks в Watch ,запускаем исполнение прошивки, нажав F 5. В результате видим:

Частоты настроены правильно, и микроконтроллер теперь работает на частоте 72 Мгц.

Итак, как Вы поняли из сегодняшнего урока, система тактирования STM 32 достаточно мощна и гибка для удовлетворения потребностей Ваших проектов. Потратив время на её настройку - Вы достигнете прекрасных результатов!

Спасибо за внимание! Ваши вопросы как обычно в комментариях!

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

Приветствую всех любителей программирования, микроконтроллеров, да и электроники в целом на нашем сайте! В этой статье немного расскажу о том, чем мы будем заниматься тут, а именно об учебном курсе по микроконтроллерам ARM.

Итак, для начала разберемся, что же нужно знать и уметь, чтобы начать изучать ARM’ы. А, в принципе, ничего супер сложного и фееричного 😉 Конечно, на контроллеры ARM люди обычно переходят, уже наигравшись с PIC’ами и AVR’ками, то есть в большинстве своем опытные разработчики. Но я постараюсь максимально подробно и понятно описывать все то, что мы будем разбирать, чтобы те, кто впервые решил попробовать себя в программировании микроконтроллеров, могли легко разобраться в материале. Кстати, если будут возникать какие-нибудь вопросы, или просто что-то будет работать не так, как задумывалось, пишите в комментарии, постараюсь разобраться и помочь.

Теперь перейдем к техническим вопросам) Несколько раз я уже упомянул название «Учебный курс ARM», но, по большому счету, это не совсем верно. Микроконтроллера ARM как такового не существует. Есть контроллер с ядром(!) ARM, а это, согласитесь, все-таки не одно и то же. Так вот, такие девайсы выпускает ряд фирм, среди которых особо выделяются, STMicroelectronics и NXP Semiconductors. Соответственно выпускают они контроллеры STM и LPC. Я остановил свой выбор на STM32, они мне просто больше понравились =) У STM очень подкупает, что разобравшись с любым МК из линейки STM32F10x, не возникнет никаких проблем и с любым другим. Одна линейка – один даташит. Кстати есть огромное количество как дорогих, так и не очень, отладочных плат с контроллерами STM32, что очень радует, хотя первое время будем отлаживать наши программы в симуляторе, чтобы оценить возможности контроллера, прежде чем покупать железо. Вот, на всякий случай, официальный сайт STMicroelectronics – .

Как то плавно выехали на тему компилятора, так что скажу пару слов об этом. Я, недолго думая, выбрал Keil, не в последнюю очередь из-за мощного встроенного симулятора. Можно и на UART там посмотреть, и на любой регистр, и даже логический анализатор имеется в наличии. Словом, у меня Keil оставил в основном только приятные впечатления, хотя есть и минусы, конечно, но не катастрофические. Так что можете смело качать Keil uvision4 с офф. сайта (). Правда есть одно НО – IDE платная, но доступен демо-режим с ограничением кода в 32кБ, которых нам пока с лихвой хватит. Кому этого мало есть огромное количество кряков для Keil’а 😉 Устанавливается все без проблем – пару раз тыкаем далее и все отлично ставится и работает без дополнительных танцев с бубном.

Собственно, вот и все, что я хотел тут рассказать, пора переходить от слов к делу, но это уже в следующей статье. Будем изучать программирование микроконтроллеров STM32 с нуля!

Недавно коллега меня подсадил на идею создания умного дома, я даже успел заказать себе десятки разных датчиков. Встал вопрос о выборе Микроконтроллера (далее МК) или платы. После некоторых поисков нашёл несколько вариантов. Среди них были и Arduino (включая его клоны, один из которых себе заказал ради того, чтобы просто побаловаться) и Launchpad , но всё это избыточно и громоздко (хотя в плане программирования гораздо проще, но тему холиваров поднимать не буду, у каждого свои вкусы). В итоге решил определяться не с готовой платой, а взять только МК и делать всё с нуля. В итоге выбирал между Atmel ATtiny (2313), Atmel ATmega (решил отказаться т.к. не смог найти за адекватные деньги), STM32 (Cortex на ядре ARM ). С тинькой я уже успел побаловаться, так что взял себе STM32VL-Discovery . Это можно назвать вступлением к циклу статей по STM32 . Оговорюсь сразу, автором большинства этих статей буду являться не я, т.к. сам только познаю, здесь я публикую их в первую очередь для себя, чтоб удобнее было искать если что-то забуду. И так поехали!

Общие сведения

Микроконтроллеры семейства STM32 содержат в своём составе до семи 16-разрядных портов ввода-вывода c именами от PORTA до PORTG. В конкретной модели микроконтроллера без исключений доступны все выводы портов, общее количество которых зависит от типа корпуса и оговорено в DataSheet на соответствующее подсемейство.

Для включения в работу порта x необходимо предварительно подключить его к шине APB2 установкой соответствующего бита IOPxEN в регистре разрешения тактирования периферийных блоков RCC_APB2ENR :

RCC->APB2ENR |= RCC_APB2ENR_IOPxEN; // Разрешить тактирование PORTx.

Управление портами STM32 осуществляется при помощи наборов из семи 32-разрядных регистров:

  • GPIOx_CRL, GPIOx_CRH – задают режимы работы каждого из битов порта в качестве входа или выхода, определяют конфигурацию входных и выходных каскадов.
  • GPIOx_IDR – входной регистр данных для чтения физического состояния выводов порта x.
  • GPIOx_ODR – выходной регистр осуществляет запись данных непосредственно в порт.
  • GPIOx_BSRR – регистр атомарного сброса и установки битов порта.
  • GPIOx_BSR – регистр сброса битов порта.
  • GPIOx_LCKR – регистр блокировки конфигурации выводов.

Режимы работы выводов GPIO

Режимы работы отдельных выводов определяются комбинацией битов MODEy и CNFy регистров GPIOx_CRL и GPIOx_CRH (здесь и далее: x-имя порта, y- номер бита порта).

GPIOx_CRL - регистр конфигурации выводов 0...7 порта x :

Структура регистра GPIOx_CRH аналогична структуре GPIOx_CRL и предназначена для управления режимами работы старших выводов порта (биты 8...15).

Биты MODEy указанных регистров определяют направление вывода и ограничение скорости переключения в режиме выхода:

  • MODEy = 00: Режим входа (состояние после сброса);
  • MODEy = 01: Режим выхода, максимальная скорость – 10МГц;
  • MODEy = 10: Режим выхода, максимальная скорость – 2МГц;
  • MODEy = 11: Режим выхода, максимальная скорость – 50МГц.

Биты CNF задают конфигурацию выходных каскадов соответствующих выводов:

в режиме входа:

  • CNFy = 00: Аналоговый вход;
  • CNFy = 01: Вход в третьем состоянии (состояние после сброса);
  • CNFy = 10: Вход с притягивающим резистором pull-up (если PxODR=1) или pull-down (если PxODR=0);
  • CNFy = 11: Зарезервировано.

в режиме выхода:

  • CNFy = 00: Двухтактный выход общего назначения;
  • CNFy = 01: Выход с открытым стоком общего назначения;
  • CNFy = 10: Двухтактный выход с альтернативной функцией;
  • CNFy = 11: Выход с открытым стоком с альтернативной функцией.

С целью повышения помехоустойчивости все входные буферы содержат в своём составе триггеры Шмидта. Часть выводов STM32 , снабженных защитными диодами, соединёнными с общей шиной и шиной питания, помечены в datasheet как FT (5V tolerant) - совместимые с напряжением 5 вольт.

Защита битов конфигурации GPIO

Для защиты битов в регистрах конфигурации от несанкционированной записи в STM32 предусмотрен регистр блокировки настроек GPIOx_LCKR
GPIOx_LCKR - регистр блокировки настроек вывода порта:

Для защиты настроек отдельного вывода порта необходимо установить соответствующий бит LCKy. После чего осуществить последовательную запись в разряд LCKK значений "1” - "0” - "1” и две операции чтения регистра LCKR , которые в случае успешной блокировки дадут для бита LCKK значения "0” и "1” . Защита настроечных битов сохранит своё действие до очередной перезагрузки микроконтроллера.

Файл определений для периферии микроконтроллеров STM32 stm32f10x.h определяет отдельные группы регистров, объединённые общим функциональным назначением (в том числе и GPIO ), как структуры языка Си, а сами регистры как элементы данной структуры. Например:

GPIOC->BSRR – регистр BSRR установки/сброса порта GPIOC.
Воспользуемся определениями из файла stm32f10x.h для иллюстрации работы с регистрами ввода-вывода микроконтроллера STM32F100RB установленного в стартовом наборе STM32VLDISCOVERY :

#include "stm32F10x.h" u32 tmp; int main (void) { RCC->APB2ENR |= RCC_APB2ENR_IOPCEN; // Разрешить тактирование PORTC. GPIOC->CRH |= GPIO_CRH_MODE8; // Вывод светодиода LED4 PC8 на выход. GPIOC->CRH &=~GPIO_CRH_CNF8; // Двухтактный выход на PC8. GPIOC->CRH |= GPIO_CRH_MODE9; // Вывод светодиода LED3 PC9 на выход. GPIOC->CRH &=~GPIO_CRH_CNF9; // Двухтактный выход на PC9. GPIOA->CRL&=~GPIO_CRL_MODE0; // Кнопка "USER" PA0 - на вход. // Заблокировать настройки выводов PC8, PC9. GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9| GPIO_LCKR_LCKK; GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9; GPIOC->LCKR = GPIO_LCKR_LCK8|GPIO_LCKR_LCK9| GPIO_LCKR_LCKK; tmp=GPIOC->LCKR; tmp=GPIOC->LCKR; }

Запись и чтение GPIO

Для записи и чтения портов предназначены входной GPIOx_IDR и выходной GPIOx_ODR регистры данных.

Запись в выходной регистр ODR порта настроенного на вывод осуществляет установку выходных уровней всех разрядов порта в соответствии с записываемым значением. Если вывод настроен как вход с подтягивающими резисторами, состояние соответствующего бита регистра ODR активирует подтяжку вывода к шине питания (pull-up, ODR=1) или общей шине микроконтроллера (pull-down, ODR=0).

Чтение регистра IDR возвращает значение состояния выводов микроконтроллера настроенных как входы:

// Если кнопка нажата (PA0=1), установить биты порта C, иначе сбросить. if (GPIOA->IDR & GPIO_IDR_IDR0) GPIOC->ODR=0xFFFF; else GPIOC->ODR=0x0000;

Сброс и установка битов порта

Для атомарного сброса и установки битов GPIO в микроконтроллерах STM32 предназначен регистр GPIOx_BSRR . Традиционный для архитектуры ARM способ управления битами регистров не требующий применения операции типа "чтение-модификация-запись” позволяет устанавливать и сбрасывать биты порта простой записью единицы в биты установки BS (BitSet) и сброса BR (BitReset) регистра BSRR . При этом запись в регистр нулевых битов не оказывает влияния на состояние соответствующих выводов.

GPIOx_BSRR – регистр сброса и установки битов порта:

GPIOC->BSRR=GPIO_BSRR_BS8|GPIO_BSRR_BR9; // Зажечь LED4 (PC8), погасить LED3. GPIOC->BSRR=GPIO_BSRR_BS9|GPIO_BSRR_BR8; // Зажечь LED3 (PC9), погасить LED4.

Альтернативные функции GPIO и их переназначение (remapping)
Практически все внешние цепи специального назначения STM32 (включая выводы для подключения кварцевых резонаторов, JTAG/SWD и так далее) могут быть разрешены на соответствующих выводах микроконтроллера, либо отключены от них для возможности их использования в качестве выводов общего назначения. Выбор альтернативной функции вывода осуществляется при помощи регистров с префиксом "AFIO ”_.
Помимо этого регистры AFIO _ позволяют выбирать несколько вариантов расположения специальных функций на выводах микроконтроллера. Это в частности относится к выводам коммуникационных интерфейсов, таймеров (регистры AFIO_MAPR ), выводам внешних прерываний (регистры AFIO_EXTICR ) и т. д.